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Improved yields for the syntheses of a variety of spiroisoxazolines were achieved through intramolecular
cyclization/methylation reactions of functionalized 5,5-disubstituted isoxazolines in one reaction vessel.
Aromatic ring containing nitrile oxides and disubstituted geminal alkenes reacted in a 1,3-dipolar fashion
to afford the corresponding 5,5-isoxazoline. A comparison of the relative location of the nucleophile and
electrophile on the isoxazoline and two different ester functional groups was performed in order to deter-
mine the best isoxazoline system for the intramolecular cyclization/methylation reaction.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Many synthesized and naturally occurring spiroisoxazolines
exhibit biological activity against a variety of disease states,
microorganisms, and enzymes. The spiroisoxazolines 11-deoxyfi-
stularin-31 and purealidin Q2 have been shown to be cytotoxic
against cancer. Furthermore, other spiroisoxazolines such as
aerothionin,3 aplysinamisines I–III,4 and agelorin5 display anti-
fungal, antibiotic, or antimycobacterial activity (Fig. 1). Since these
and other spiroisoxazoline-containing natural products express
such a wide array of bioactivities, the synthesis and derivatization
of this family of compounds continue to be of interest.6

A number of methods exists for the synthesis of functionalized
carbocyclic spiroisoxazolines. Some of these methods include the
oxidation of an aromatic ring followed by the intramolecular cycli-
zation of a pendant oxime,7,8 the 1,3-dipolar cycloaddition of an
exocyclic alkene,9 or other methods.6b,6d,6e Some oxidative meth-
ods for spiroisoxazoline synthesis appear to be limited to aromatic
systems, and often require the use of toxic oxidants.7a Further-
more, spiroisoxazoline synthesis via 1,3-dipolar cycloaddition is
usually restricted to the use of saturated ring systems with an exo-
cyclic double bond as the dipolarophile.9a,9b Herein, we report a
facile synthetic methodology for the construction of functionalized
unsaturated spiroisoxazolines that involves the intramolecular
ll rights reserved.

: +1 601 979 3674.
Hamme II).
cyclization/methylation of a 5,5-disubstituted isoxazoline10 in
one reaction vessel.
2. Results and discussion

A previous report for the syntheses of spiroisoxazolines through
an intramolecular cyclization/methylation methodology used an
isoxazoline where the ester functionality was adjacent to the isox-
azoline, and the attacking enolate was further away from the isox-
azoline11 (Scheme 1). The isolated yield for the intramolecular
cyclization was good when the aromatic ring was unsubstituted.
However, when other aromatic rings were incorporated into the
isoxazoline, the isolated yields dramatically decreased. Our first at-
tempt to improve the intramolecular cyclization yields was to
modify the ester from an ethyl to a methyl ester. Even though ethyl
esters are not very bulky, a decrease in ester size could potentially
be beneficial. Unfortunately, low yields were also obtained with
methyl esters. Other leaving groups were considered, but we
decided to relocate the relative positions of the nucleophile and
the electrophile for the intramolecular cyclization/methylation
reaction as shown in Scheme 2. When the ester was moved away
from a position adjacent to the isoxazoline to a more remote loca-
tion, we believed that the ester carbonyl would be more available
for electrophilic attack by the enolate. In order to test this hypoth-
esis, the appropriate isoxazoline was synthesized.

The syntheses of a variety of isoxazolines was achieved through
the 1,3-dipolar cycloaddition of disubstituted geminal alkenes, 1
and 2,12 with the requisite nitrile oxide. Compounds 3a–d and
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Scheme 1. Spiroisoxazoline syntheses from an ethyl ester that is adjacent to the isoxazoline.
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Figure 1. Biologically active spiroisoxazoline natural products.
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Scheme 2. Spiroisoxazoline syntheses from a methyl ketone that is adjacent to the isoxazoline.
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4a–d were isolated as a single regioisomer after the respective 1,3-
dipolar cycloaddition of 1 and 2 with the corresponding in situ
generated nitrile oxide13 (Scheme 3). Even though an assortment
of substituted aromatic rings was incorporated into the isoxazo-
line, two different ester functionalities were investigated in order
to compare the relative efficacy of these two esters during the spi-
roisoxazoline ring construction through the intramolecular cycli-
zation/methylation strategy.
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When isoxazolines 3a–d, which have a methyl ester, were re-
acted with sodium hydride, intramolecular cyclization ensued,14

and the corresponding enolates were methylated with dimethyl
sulfate to afford the desired regioisomeric spiroisoxazolines 5a–d
and 6a–d11 (Scheme 4). The isolation of two spiroisoxazoline
regioisomers results from the O-methylation of both spiroisoxazo-
line intermediate enolates as shown in Scheme 5,11 and the re-
ported ratios between regioisomers 5 and 6 were based upon
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their respective isolated yields. The spiroisoxazolines arising from
the isoxazoline methyl ester were isolated in moderate to good
yields, but the ethyl ester containing isoxazoline was examined
in order to determine if increased yields of 5a–d and 6a–d could
be realized. Upon subjecting isoxazolines 4a–d to the intramolecu-
lar cyclization/methylation reaction conditions, the isolated yields
of 5a–d and 6a–d were examined. In three cases, spiroisoxazolines
5a–d and 6a–d were isolated in higher yields when the ethyl ester
containing isoxazolines 4a–d were used as the intramolecular
Figure 2. Thermal ellipsoid plots f
cyclization/methylation substrate. Only spiroisoxazolines 5c and
6c were isolated in higher yields from the methyl ester isoxazoline
precursor (Scheme 4). Structural confirmation of the spiroisoxazo-
lines was obtained through NMR studies, and the structures of 5c
and 6c were further confirmed through single X-ray crystallo-
graphic analysis17 (Fig. 2).

In summary, starting from a disubstituted geminal alkene, spi-
roisoxazolines were synthesized in two steps. After the regioselec-
tive synthesis of the desired 5,5-disubstituted isoxazoline through
or the structures of 5c and 6c.
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nitrile oxide-mediated 1,3-dipolar cycloaddition with a disubsti-
tuted geminal alkene,15 regioisomeric spiroisoxazolines were con-
structed through an intramolecular cyclization/methylation
synthetic sequence.16 Structural confirmation of some of the spi-
roisoxazolines was realized through X-ray crystallographic
analysis.
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